Mathematics and the Framework of Quantum Mechanics

Abdullah Naeem Malik

Mathematics Department, Qauid e Azam University

09/12/15

Opening quote

All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson - $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$
- An operator $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ is called linear iff $T(\alpha x+\beta y)=\alpha T x+\beta T y$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$
- An operator $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ is called linear iff
$T(\alpha x+\beta y)=\alpha T x+\beta T y$
- $\|T\|<\infty \Longleftrightarrow\|T(x)\| \leq k\|x\|$ for $k<\infty$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$
- An operator $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ is called linear iff $T(\alpha x+\beta y)=\alpha T x+\beta T y$
- $\|T\|<\infty \Longleftrightarrow\|T(x)\| \leq k\|x\|$ for $k<\infty$
- Adjoint of such a bounded, linear operator always exists such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and $\|T\|=\left\|T^{*}\right\|$

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$
- An operator $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ is called linear iff $T(\alpha x+\beta y)=\alpha T x+\beta T y$
- $\|T\|<\infty \Longleftrightarrow\|T(x)\| \leq k\|x\|$ for $k<\infty$
- Adjoint of such a bounded, linear operator always exists such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and $\|T\|=\left\|T^{*}\right\|$
- Operator \Longleftrightarrow Matrices

Functional Analysis Cheat Sheet

- $\langle, .\rangle:, V \times V \longrightarrow \mathbb{F}$ such that
- All of science is uncertain and subject to revision. The glory of science is to imagine more than we can prove. Freeman Dyson
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Longleftrightarrow x=0$
- $\langle\alpha x+\beta z, y\rangle=\alpha\langle x, y\rangle+\underline{\beta}\langle z, y\rangle$ and $\langle x, \alpha y+\beta z\rangle=\bar{\alpha}\langle x, y\rangle+\bar{\beta}\langle x, z\rangle$
- $\langle x, y\rangle=\overline{\langle y, x\rangle}$
- This makes a norm space (further, metric) with
$\sqrt{\langle x-y, x-y\rangle}=\|x-y\|=d(x, y)$
- An operator $T: \mathcal{H}_{1} \longrightarrow \mathcal{H}_{2}$ is called linear iff $T(\alpha x+\beta y)=\alpha T x+\beta T y$
- $\|T\|<\infty \Longleftrightarrow\|T(x)\| \leq k\|x\|$ for $k<\infty$
- Adjoint of such a bounded, linear operator always exists such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and $\|T\|=\left\|T^{*}\right\|$
- Operator \Longleftrightarrow Matrices
- An operator is unitary if $U^{*} U=U U^{*}=I\left(\Longrightarrow\langle U x, U y\rangle_{\square}=\langle x, y\rangle\right)$

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$
- $\mathbb{F}=\mathbb{C}, \sigma(x)$ is compact, non-empty where $\|x\|<\infty$

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$
- $\mathbb{F}=\mathbb{C}, \sigma(x)$ is compact, non-empty where $\|x\|<\infty$
- $\sigma(f)=\mathcal{R}(f)$ if $\mathcal{D}(f)=$ compact

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$
- $\mathbb{F}=\mathbb{C}, \sigma(x)$ is compact, non-empty where $\|x\|<\infty$
- $\sigma(f)=\mathcal{R}(f)$ if $\mathcal{D}(f)=$ compact
- There exists an orthonormal basis of \mathcal{H} for any (compact) self-adjoint T

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$
- $\mathbb{F}=\mathbb{C}, \sigma(x)$ is compact, non-empty where $\|x\|<\infty$
- $\sigma(f)=\mathcal{R}(f)$ if $\mathcal{D}(f)=$ compact
- There exists an orthonormal basis of \mathcal{H} for any (compact) self-adjoint T
- For $x \in \mathcal{H}$, there exists f_{x} such that $f_{x}(y)=\langle y, x\rangle$ with $\|x\|=\|f\|$ for all $y \in \mathcal{H}$

Functional Analysis Cheat Sheet (cotd.)

- Sum of two self-adjoint operators is self-adjoint whereas the product is self-adjoint iff the operators commute
- For any self-adjoint operator $T, U(t)=e^{(-i 2 \pi / h) T}$ is unitary, parameterised operator $\forall t \in \mathbb{R}$
- Eigenvalues of self-adjoint, symmetric and Hermitian operators are always real.
- Spectrum $\sigma(x)=\left\{\lambda \in \mathbb{F}:(x-\lambda e)^{-1}\right.$ does not exist $\}$
- $\mathbb{F}=\mathbb{C}, \sigma(x)$ is compact, non-empty where $\|x\|<\infty$
- $\sigma(f)=\mathcal{R}(f)$ if $\mathcal{D}(f)=$ compact
- There exists an orthonormal basis of \mathcal{H} for any (compact) self-adjoint T
- For $x \in \mathcal{H}$, there exists f_{x} such that $f_{x}(y)=\langle y, x\rangle$ with $\|x\|=\|f\|$ for all $y \in \mathcal{H}$
- $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is not a Hilbert space if $\mathbb{F}=\mathbb{H}$

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$
- Completeness \Longleftrightarrow every absolutely convergent series converges

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$
- Completeness \Longleftrightarrow every absolutely convergent series converges
- Orthomodular, Hermitian space is Hilbert with $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$
- Completeness \Longleftrightarrow every absolutely convergent series converges
- Orthomodular, Hermitian space is Hilbert with $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}
- Unit ball in infinite dimension is not precompact

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$
- Completeness \Longleftrightarrow every absolutely convergent series converges
- Orthomodular, Hermitian space is Hilbert with $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}
- Unit ball in infinite dimension is not precompact
- There exists $\left(e_{n}\right) \in \mathcal{H}$ such that $\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle<\infty$ for all $x \in$ precompact E

Functional Analysis Cheat Sheet (cotd.)

- T is symmetric if $\langle T x, y\rangle=\langle x, T y\rangle$ for all $x, y \in \mathcal{D}(T)$
- T is Hermitian if it is symmetric and bounded and $\overline{\mathcal{D}(T)}=\mathcal{H}$
- T is said to be self-adjoint if it is symmetric and $\mathcal{D}(T)=\mathcal{D}\left(T^{*}\right)$
- $\mathcal{D}\left(T^{*}\right)=\left\{y \in \mathcal{H}:|\langle T x, y\rangle| \leq k_{y}\|x\| \forall x \in \mathcal{D}(T)\right\}$
- Completeness \Longleftrightarrow every absolutely convergent series converges
- Orthomodular, Hermitian space is Hilbert with $\mathbb{F}=\mathbb{R}, \mathbb{C}$ or \mathbb{H}
- Unit ball in infinite dimension is not precompact
- There exists $\left(e_{n}\right) \in \mathcal{H}$ such that $\sum_{n=1}^{\infty}\left\langle x, e_{n}\right\rangle<\infty$ for all $x \in$ precompact E
- $\Sigma\left|\alpha_{n}\right|^{2}<\infty \Longleftrightarrow \Sigma \alpha_{n} e_{n}<\infty$

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems
- Mathematical Language \Longrightarrow Axioms \Longrightarrow Predictions (exploration?)

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems
- Mathematical Language \Longrightarrow Axioms \Longrightarrow Predictions (exploration?)
- Both are successful if they can be extended and offer conceptual economy.

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems
- Mathematical Language \Longrightarrow Axioms \Longrightarrow Predictions (exploration?)
- Both are successful if they can be extended and offer conceptual economy.
- Interpretation should be as direct as possible!

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems
- Mathematical Language \Longrightarrow Axioms \Longrightarrow Predictions (exploration?)
- Both are successful if they can be extended and offer conceptual economy.
- Interpretation should be as direct as possible!
- States, observables, evolution, measurement.

Physics vs Mathematics

- Language \Longrightarrow Axioms \Longrightarrow Theorems
- Mathematical Language \Longrightarrow Axioms \Longrightarrow Predictions (exploration?)
- Both are successful if they can be extended and offer conceptual economy.
- Interpretation should be as direct as possible!
- States, observables, evolution, measurement.
- A divorce of mathematics and physics?

Quick question

Can you hear the shape of a drum?

$$
(\Longrightarrow \Delta u=\lambda u)
$$

(Eigen $=$ German for "inherent/characteristic")

Physical Motivations

$$
E=n h f\left(\text { not intensity }=W / m^{2}\right)
$$

Physical motivations

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,
- then measurement "reduces" the possibilities of the state

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,
- then measurement "reduces" the possibilities of the state
- Axiom 1: $\|\mathbf{x}\|=1$ for $\mathbf{x} \in X$

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,
- then measurement "reduces" the possibilities of the state
- Axiom 1: $\|\mathbf{x}\|=1$ for $\mathbf{x} \in X$
- $X=\mathcal{H}$ (separable with basis $=$ eigenstates)

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,
- then measurement "reduces" the possibilities of the state
- Axiom 1: $\|\mathbf{x}\|=1$ for $\mathbf{x} \in X$
- $X=\mathcal{H}$ (separable with basis $=$ eigenstates)
- Axiom 2: Measurement $=$ Projection operator (Thank you, von Neumann, for the mess)

Conclusions

- $\Delta Q \Delta P \geq \frac{h}{4 \pi}$
- $\Longleftarrow Q P \neq P Q$
- Randomness is inherent
- What framework?
- If $\mathbf{S}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}+\alpha_{3} \mathbf{x}_{3}+\alpha_{4} \mathbf{x}_{4}$,
- then measurement "reduces" the possibilities of the state
- Axiom 1: $\|\mathbf{x}\|=1$ for $\mathbf{x} \in X$
- $X=\mathcal{H}$ (separable with basis $=$ eigenstates)
- Axiom 2: Measurement = Projection operator (Thank you, von Neumann, for the mess)
- Axiom 3: Observables = self-adjoint operators

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- Focus: $\frac{(0,1)+(1,0)}{\sqrt{2}}$ (trouble?)

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- Focus: $\frac{(0,1)+(1,0)}{\sqrt{2}}$ (trouble?)
- Note: if $\mathcal{H}=L^{2}[0,1], \mathbf{x}=$ wave function

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- Focus: $\frac{(0,1)+(1,0)}{\sqrt{2}}$ (trouble?)
- Note: if $\mathcal{H}=L^{2}[0,1], \mathbf{x}=$ wave function
- Schrodinger's equation: $H x=E x$ (Axiom 5)

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- Focus: $\frac{(0,1)+(1,0)}{\sqrt{2}}$ (trouble?)
- Note: if $\mathcal{H}=L^{2}[0,1], \mathbf{x}=$ wave function
- Schrodinger's equation: $H x=E x$ (Axiom 5)
- $E=i \frac{h}{2 \pi} \frac{\partial}{\partial t}$ vs $E=-\frac{\partial}{\partial t} \Longrightarrow \mathbb{C}$ (yay?)

Axioms of Quantum Mechanics

- Axiom 4: Expectation value $=\langle x, A x\rangle\left(=\int \bar{x} A x d \mu\right.$, by the way $)$
- Composite systems $=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
- Focus: $\frac{(0,1)+(1,0)}{\sqrt{2}}$ (trouble?)
- Note: if $\mathcal{H}=L^{2}[0,1], \mathbf{x}=$ wave function
- Schrodinger's equation: $H x=E x$ (Axiom 5)
- $E=i \frac{h}{2 \pi} \frac{\partial}{\partial t}$ vs $E=-\frac{\partial}{\partial t} \Longrightarrow \mathbb{C}$ (yay?)
- $5^{\prime}, x\left(t+t_{0}\right)=U(t) x\left(t_{0}\right)$

Where do these come from?

- $P_{i j}=P\left(\psi_{i} \longrightarrow \phi_{j}\right)$ with the following assumptions:
(1) $\sum P_{i j}=1$
(2) $P\left(\psi_{i} \longrightarrow \psi_{j}\right)=\delta_{i j}$
(3) $P\left(\psi_{i} \longrightarrow \phi_{j}\right)=P\left(\phi_{j} \longrightarrow \psi_{i}\right)$

Any proposed dynamical law, apart from being able to determine probabilities $P\left(\psi_{i} \longrightarrow \phi_{i}\right)$ and $P\left(\phi_{i} \longrightarrow \chi_{i}\right)$ must also apply to a third, compatible quantity with eigenvectors χ_{1}, χ_{2}

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?
- Why C?

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?
- Why C?
- Why sharp eigenvalues? (\Longrightarrow why eigenbasis?)

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?
- Why C?
- Why sharp eigenvalues? (\Longrightarrow why eigenbasis?)
- Why linear operators?

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?
- Why C?
- Why sharp eigenvalues? (\Longrightarrow why eigenbasis?)
- Why linear operators?
- Why separable? (uncountable eigenvectors)

Issues!

- $\frac{(0,1)+(1,0)}{\sqrt{2}} \equiv \frac{(0,1)-(1,0)}{\sqrt{2}}$
- Observables may be unbounded (some have empty spectrum)
- \mathcal{H} vs $B(0,1)$
- t is intrinsic.
- Hilbert spaces vs Semi-norm spaces
- inner product vs $\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}-x_{4} y_{4}$
- Algebra vs geometry?
- Why C?
- Why sharp eigenvalues? (\Longrightarrow why eigenbasis?)
- Why linear operators?
- Why separable? (uncountable eigenvectors)
- Why associative law?

Alternative Formulations of Quantum Mechanics

- Path Integral Formulation
- Phase space formulation of Quantum Mechanics and Geometric Quantization
- Signed Particle Formulation
- Quantum Field Theory in Curved Spacetime
- Axiomatic, Algebraic and Constructive Quantum Field Theory
- $C *$-algebraic formalism
- Generalized Statistical Model of Quantum Mechanics

